python Matplotlib+Numpy学习
True

【转】https://www.cnblogs.com/TensorSense/p/6795995.html

【转】https://www.cnblogs.com/TensorSense/p/6802280.html

Matplotlib


plt.savefig(‘test’, dpi = 600) :将绘制的图画保存成png格式,命名为 test

plt.ylabel(‘Grade’) :  y轴的名称

plt.axis([-1, 10, 0, 6]) :  x轴起始于-1,终止于10 ,y轴起始于0,终止于6

plt.subplot(3,2,4) :  分成3行2列,共6个绘图区域,在第4个区域绘图。排序为行优先。也可 plt.subplot(324),将逗号省略。

 

.plot函数

plt.plot(x, y, format_string, **kwargs): x为x轴数据,可为列表或数组;y同理;format_string 为控制曲线的格式字符串, **kwargs 第二组或更多的(x, y, format_string)

format_string: 由 颜色字符、风格字符和标记字符组成。

颜色字符:‘b’蓝色  ;‘#008000’RGB某颜色;‘0.8’灰度值字符串

风格字符:‘-’实线;‘--’破折线; ‘-.’点划线; ‘:’虚线 ; ‘’‘’无线条

标记字符:‘.’点标记  ‘o’ 实心圈 ‘v’倒三角  ‘^’上三角

 

eg: plt.plot(a, a*1.5, ‘go-’,    a, a*2, ‘*’)   第二条无曲线,只有点

 

.plot 显示中文字符

pyplot并不默认支持中文显示,需要rcParams修改字体来实现

rcParams的属性:

‘font.family’ 用于显示字体的名字

‘font.style’ 字体风格,正常’normal’ 或斜体’italic’

‘font.size’ 字体大小,整数字号或者’large’   ‘x-small’

eg:

import matplotlib

matplotlib.rcParams[‘font.family’] = ‘STSong’

matplotlib.rcParams[‘font.size’] = 20

设定绘制区域的全部字体变成 华文仿宋,字体大小为20

 

中文显示2:只希望在某地方绘制中文字符,不改变别的地方的字体

在有中文输出的地方,增加一个属性: fontproperties

eg:

plt.xlabel(‘横轴:时间’, fontproperties = ‘simHei’, fontsize = 20)

 

pyplot文本显示函数:

plt.xlabel():对x轴增加文本标签

plt.ylabel():同理

plt.title(): 对图形整体增加文本标签

plt.text(): 在任意位置增加文本

plt. annotate(s, xy = arrow_crd, xytext = text_crd, arrowprops = dict)

: 在图形中增加带箭头的注解。s表示要注解的字符串是什么,xy对应箭头所在的位置,xytext对应文本所在位置,arrowprops定义显示的属性

eg:

plt.xlabel(‘横轴:时间’, fontproperties = ‘SimHei’, fontsize = 15, color = ‘green’)

plt.ylabel(‘纵轴:振幅’, fontproperties = ‘SimHei’, fontsize = 15)

plt.title(r’正弦波实例 $y=cons(2\pi x)$’ , fontproperties = ‘SimHei’, fontsize = 25)

plt.annotate (r’%mu=100$, xy = (2, 1), xytext = (3, 1.5),

arrowprops = dict(facecolor = ‘black’, shrink = 0.1, width = 2)) # width表示箭头宽度

plt.text (2, 1, r’$\mu=100$, fontsize = 15)

plt.grid(True)

 

plt. annotate(s, xy = arrow_crd, xytext = text_crd, arrowprops = dict)

 

plt子绘图区域

plt.subplot2grid(GridSpec, CurSpec, colspan=1, rowspan=1):设定网格,选中网格,确定选中行列区域数量,编号从0开始。

eg:

plt.subplot2grid((3, 3), (1, 0), colspan = 2) : (3,3)表示分为3行3列,(1,0)表示选中第1行,第0列的区域进行绘图,colspan=2表示在选中区域的延伸

 

 

 

GridSpec类



 

Plot的图表函数

plt.plot(x,y , fmt)  :绘制坐标图

plt.boxplot(data, notch, position): 绘制箱形图

plt.bar(left, height, width, bottom) : 绘制条形图

plt.barh(width, bottom, left, height) : 绘制横向条形图

plt.polar(theta, r) : 绘制极坐标图

plt.pie(data, explode) : 绘制饼图

plt.scatter(x, y) :绘制散点图

plt.hist(x, bings, normed) : 绘制直方图

 

绘制饼图

 

explode表示突出,如橘色这一块突出;autopct  表示显示数据的格式; shadow表示二维饼图;startangle表示起始的角度;

此为椭圆形饼图,要为圆形,可添加:  plt.axis(‘equal’)

 

绘制直方图

bings将直方图的取值范围进行均等划分bings个区间;

normed =1 表示将出现频次进行了归一化。 normed=0,则为频次;

alpha表示直方图的透明度[0, 1] ;

histtype = ‘stepfilled’  表示去除条柱的黑色边框

 

面向对象的极坐标图绘制

 

面向对象散点图绘制

 

将subplots()变成一个对象,fig和ax表示subplots生成的图表以及相关区域。subplots为空时,默认为subplots(111)


Numpy

Numpy是科学计算库,是一个强大的N维数组对象ndarray,是广播功能函数。其整合C/C++.fortran代码的工具 ,更是Scipy、Pandas等的基础

.ndim :维度 
.shape :各维度的尺度 (2,5) 
.size :元素的个数 10 
.dtype :元素的类型 dtype(‘int32’) 
.itemsize :每个元素的大小,以字节为单位 ,每个元素占4个字节 
ndarray数组的创建 
np.arange(n) ; 元素从0到n-1的ndarray类型 
np.ones(shape): 生成全1 
np.zeros((shape), ddtype = np.int32) : 生成int32型的全0 
np.full(shape, val): 生成全为val 
np.eye(n) : 生成单位矩阵

np.ones_like(a) : 按数组a的形状生成全1的数组 
np.zeros_like(a): 同理 
np.full_like (a, val) : 同理

np.linspace(1,10,4): 根据起止数据等间距地生成数组 
np.linspace(1,10,4, endpoint = False):endpoint 表示10是否作为生成的元素 
np.concatenate():

  • 数组的维度变换

.reshape(shape) : 不改变当前数组,依shape生成 
.resize(shape) : 改变当前数组,依shape生成 
.swapaxes(ax1, ax2) : 将两个维度调换 
.flatten() : 对数组进行降维,返回折叠后的一位数组

  • 数组的类型变换

数据类型的转换 :a.astype(new_type) : eg, a.astype (np.float) 
数组向列表的转换: a.tolist() 
数组的索引和切片

  • 一维数组切片

a = np.array ([9, 8, 7, 6, 5, ]) 
a[1:4:2] –> array([8, 6]) : a[起始编号:终止编号(不含): 步长]

  • 多维数组索引

a = np.arange(24).reshape((2, 3, 4)) 
a[1, 2, 3] 表示 3个维度上的编号, 各个维度的编号用逗号分隔

  • 多维数组切片

a [:,:,::2 ] 缺省时,表示从第0个元素开始,到最后一个元素 
数组的运算 
np.abs(a) np.fabs(a) : 取各元素的绝对值 
np.sqrt(a) : 计算各元素的平方根 
np.square(a): 计算各元素的平方 
np.log(a) np.log10(a) np.log2(a) : 计算各元素的自然对数、10、2为底的对数 
np.ceil(a) np.floor(a) : 计算各元素的ceiling 值, floor值(ceiling向上取整,floor向下取整) 
np.rint(a) : 各元素 四舍五入 
np.modf(a) : 将数组各元素的小数和整数部分以两个独立数组形式返回 
np.exp(a) : 计算各元素的指数值 
np.sign(a) : 计算各元素的符号值 1(+),0,-1(-) 

np.maximum(a, b) np.fmax() : 比较(或者计算)元素级的最大值 
np.minimum(a, b) np.fmin() : 取最小值 
np.mod(a, b) : 元素级的模运算 
np.copysign(a, b) : 将b中各元素的符号赋值给数组a的对应元素

  • 数据的CSV文件存取

CSV (Comma-Separated Value,逗号分隔值) 只能存储一维和二维数组

np.savetxt(frame, array, fmt=’% .18e’, delimiter = None): frame是文件、字符串等,可以是.gz .bz2的压缩文件; array 表示存入的数组; fmt 表示元素的格式 eg: %d % .2f % .18e ; delimiter: 分割字符串,默认是空格 
eg: np.savetxt(‘a.csv’, a, fmt=%d, delimiter = ‘,’ )

np.loadtxt(frame, dtype=np.float, delimiter = None, unpack = False) : frame是文件、字符串等,可以是.gz .bz2的压缩文件; dtype:数据类型,读取的数据以此类型存储; delimiter: 分割字符串,默认是空格; unpack: 如果为True, 读入属性将分别写入不同变量。 
多维数据的存取 
a.tofile(frame, sep=’’, format=’%s’ ) : frame: 文件、字符串; sep: 数据分割字符串,如果是空串,写入文件为二进制 ; format:: 写入数据的格式 
eg: a = np.arange(100).reshape(5, 10, 2) 
a.tofile(“b.dat”, sep=”,”, format=’%d’)

np.fromfile(frame, dtype = float, count=-1, sep=’’): frame: 文件、字符串 ; dtype: 读取的数据以此类型存储; count:读入元素个数, -1表示读入整个文件; sep: 数据分割字符串,如果是空串,写入文件为二进制

PS: a.tofile() 和np.fromfile()要配合使用,要知道数据的类型和维度。

np.save(frame, array) : frame: 文件名,以.npy为扩展名,压缩扩展名为.npz ; array为数组变量 
np.load(fname) : frame: 文件名,以.npy为扩展名,压缩扩展名为

np.save() 和np.load() 使用时,不用自己考虑数据类型和维度。

  • numpy随机数函数

numpy 的random子库

rand(d0, d1, …,dn) : 各元素是[0, 1)的浮点数,服从均匀分布 
randn(d0, d1, …,dn):标准正态分布 
randint(low, high,( shape)): 依shape创建随机整数或整数数组,范围是[ low, high) 
seed(s) : 随机数种子

shuffle(a) : 根据数组a的第一轴进行随机排列,改变数组a 
permutation(a) : 根据数组a的第一轴进行随机排列, 但是不改变原数组,将生成新数组 
choice(a[, size, replace, p]) : 从一维数组a中以概率p抽取元素, 形成size形状新数组,replace表示是否可以重用元素,默认为False。 
eg:  
replace = False时,选取过的元素将不会再选取

uniform(low, high, size) : 产生均匀分布的数组,起始值为low,high为结束值,size为形状 
normal(loc, scale, size) : 产生正态分布的数组, loc为均值,scale为标准差,size为形状 
poisson(lam, size) : 产生泊松分布的数组, lam随机事件发生概率,size为形状 
eg: a = np.random.uniform(0, 10, (3, 4)) a = np.random.normal(10, 5, (3, 4))

  • numpy的统计函数

sum(a, axis = None) : 依给定轴axis计算数组a相关元素之和,axis为整数或者元组 
mean(a, axis = None) : 同理,计算平均值 
average(a, axis =None, weights=None) : 依给定轴axis计算数组a相关元素的加权平均值 
std(a, axis = None) :同理,计算标准差 
var(a, axis = None): 计算方差 
eg: np.mean(a, axis =1) : 对数组a的第二维度的数据进行求平均 
a = np.arange(15).reshape(3, 5) 
np.average(a, axis =0, weights =[10, 5, 1]) : 对a第一各维度加权求平均,weights中为权重,注意要和a的第一维匹配

min(a) max(a) : 计算数组a的最小值和最大值 
argmin(a) argmax(a) : 计算数组a的最小、最大值的下标(注:是一维的下标) 
unravel_index(index, shape) : 根据shape将一维下标index转成多维下标 
ptp(a) : 计算数组a最大值和最小值的差 
median(a) : 计算数组a中元素的中位数(中值) 
eg:a = [[15, 14, 13], 
[12, 11, 10] ] 
np.argmax(a) –> 0 
np.unravel_index( np.argmax(a), a.shape) –> (0,0)

  • numpy的梯度函数

np.gradient(a) : 计算数组a中元素的梯度,f为多维时,返回每个维度的梯度 
离散梯度: xy坐标轴连续三个x轴坐标对应的y轴值:a, b, c 其中b的梯度是(c-a)/2 
而c的梯度是: (c-b)/1

当为二维数组时,np.gradient(a) 得出两个数组,第一个数组对应最外层维度的梯度,第二个数组对应第二层维度的梯度。 

  • 图像的表示和变换

PIL, python image library 库 
from PIL import Image 
Image是PIL库中代表一个图像的类(对象)

im = np.array(Image.open(“.jpg”))

im = Image.fromarray(b.astype(‘uint8’)) # 生成 
im.save(“路径.jpg”) # 保存

im = np.array(Image.open(“.jpg”).convert(‘L’)) # convert(‘L’)表示转为灰度图


导出固定格式的word编码思路
True